Library       Calculate

Geometrical Properties of Angle Section


angle.png

Dimensions

h = m, tw = m

bf = m, tf = m

Area

Aw = h·tw m2

Af = (bftwtf m2

A = Aw + Af m2

Centroid

Sz = Aw·tw/2 + Af·(bf + tw)/2 m3

yc = Sz/A m

Sy = Aw·h/2 + Af·tf/2 m3

zc = Sy/A m

Perimeter

P = 2·(h + bf) m

Second moments of area

Iy_w = Aw·(h2/12 + (zch/2)2) m4

Iy_f = Af·(tf2/12 + (zctf/2)2) m4

Iy = Iy_w + Iy_f m4

Iz_w = (htftw·(tw2/12 + (yctw/2)2) m4

Iz_f = tf·bf·(bf2/12 + (ycbf/2)2) m4

Iz = Iz_w + Iz_f m4

Iyz = Aw·(h/2 – zc)·(tw/2 – yc) + Af·(tf/2 – zc)·((bf + tw)/2 – yc) m4

Principal moments of area

I1 = (Iy + Iz)/2 + (IyIz)2/4 + Iyz2 m4

I2 = (Iy + Iz)/2 – (IyIz)2/4 + Iyz2 m4

Angle of principal axis

α1 = atan((IyI1)/Iyz) о

Polar moment of area

Ix = I1 + I2 m4

Radii of gyration

ry = √Iy/A m

rz = √Iz/A m

r1 = √I1/A m

r2 = √I2/A m

rx = √Ix/A m


Substitute