Library       Calculate

Geometrical Properties of Double Tee Section


double-tee.png

Dimensions

h = m, tw = m

bf1 = m, tf1 = m

bf2 = m, tf2 = m

Area

Aw = h·tw m2

Af1 = (bf1twtf1 m2

Af2 = (bf2twtf2 m2

A = Aw + Af1 + Af2 m2

Centroid

yc = max(bf1; bf2)/2 m

Sy = Aw·h/2 + Af1·tf1/2 + Af2·(htf2/2) m3

zc = Sy/A m

Perimeter

P = 2·(h + bf1 + bf2tw) m

Second moments of area

Iy_w = Aw·(h2/12 + (zch/2)2) m4

Iy_f1 = Af1·(tf12/12 + (zctf1/2)2) m4

Iy_f2 = Af2·(tf22/12 + (hzctf2/2)2) m4

Iy = Iy_w + Iy_f1 + Iy_f2 m4

Iz = (tf1·bf13 + tf2·bf23 + (htf1tf2tw3)/12 m4

Polar moment of area

Ix = Iy + Iz m4

Radii of gyration

ry = √Iy/A m

rz = √Iz/A m

rx = √Ix/A m


Substitute