Library       Calculate

Geometrical Properties of Elliptical Pipe


elliptical-pipe.png

Dimensions

a = m, b = m

t = m

a1 = at m

b1 = bt m

Area

A = π·(a·ba1·b1) m2

Centroid

yc = b m, zc = a m

Perimeter (approx.)

P = π·(3·(a + b) – √(3·a + b)·(a + 3·b)) m

Second moments of area

Iy = π/4·(a·b3a1·b13) m4

Iz = π/4·(b·a3b1·a13) m4

Polar moment of area

Ix = Iy + Iz m4

Torsional constant

#If

k = b1/b

#Else

k = a1/a

#End If

It = π·a3·b3/(a2 + b2)·(1 – k4) m4

Torsional section modulus

#If

Wt = π·a·b2/2·(1 – k4) m3

#Else

Wt = π·b·a2/2·(1 – k4) m3

#End If

Radii of gyration

ry = √Iy/A m

rz = √Iz/A m

rx = √Ix/A m


Substitute